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Topoisomerase 1 (top1) inhibitors are proving useful against a range of refractory tumors, and
there is considerable interest in the development of additional top1 agents. Despite crystal-
lographic studies, the binding site and ligand properties that lead to activity are poorly
understood. Here we report a unique approach to quantitative structure-activity relationship
(QSAR) analysis based on the National Cancer Institute’s (NCI) drug databases. In 1990, the
NCI established a drug discovery program in which compounds are tested for their ability to
inhibit the growth of 60 different human cancer cell lines in culture. More than 70 000
compounds have been screened, and patterns of activity against the 60 cell lines have been
found to encode rich information on mechanisms of drug action and drug resistance. Here, we
use hierarchical clustering to define antitumor activity patterns in a data set of 167 tested
camptothecins (CPTs) in the NCI drug database. The average pairwise Pearson correlation
coefficient between activity patterns for the CPT set was 0.70. Coherence between chemical
structures and their activity patterns was observed. QSAR studies were carried out using the
mean 50% growth inhibitory concentrations (GI50) for 60 cell lines as the dependent variables.
Different statistical methods, including stepwise linear regression, principal component
regression (PCR), partial least-squares regression (PLS), and fully cross-validated genetic
function approximation (GFA) were applied to construct quantitative structure-antitumor
relationship models. For our data set, the GFA method performed better in terms of correlation
coefficients and cross-validation analysis. A number of molecular descriptors were identified
as being correlated with antitumor activity. Included were partial atomic charges and three
interatomic distances that define the relative spatial dispositions of three significant atoms
(the hydroxyl hydrogen of the E-ring, the lactone carbonyl oxygen of the E-ring, and the carbonyl
oxygen of the D-ring). The cross-validated r2 for the final GFA model was 0.783, indicating a
predictive QSAR model.

Introduction

Camptothecin (CPT) topoisomerase 1 (top1) inhibitors
are proving useful against a range of refractory tumors,
most prominently against some colon and ovarian
cancers.1-3 Two of the CPTs, topotecan and CPT-11,
have received Food and Drug Administration approval,
and several others are in clinical trials. The continuing
interest in development of better top1 inhibitors
prompted us to analyze structure-activity relationships
involving the binding site of top1 and the presumed
ternary cleavable complex of top1 with its inhibitors and
DNA. Despite recent crystallographic structures for
top1, its complex binding site is poorly understood, and
the structural characteristics of a ligand that promote
potency have been only partially determined.4,5 Here we
report an unusual approach to quantitative structure-
activity relationship (QSAR) analysis: the large drug
activity databases generated over the last 11 years by
the National Cancer Institute (NCI) are used in con-
junction with cluster analysis and a genetic algorithm-

based method for nonlinear analysis to predict func-
tionally important molecular features.

Since 1990, the NCI has screened >70 000 chemical
compounds against a panel of 60 human cancer cell
lines.6-9 The 50% growth inhibitory concentration (GI50)
for any particular cell line is an index of cytotoxicity or
cytostasis. Similarity in GI50 activity patterns across the
60 cell lines very often indicates similarity in mecha-
nism of action, mode of drug resistance, and molecular
structure of tested compounds.10,11 A number of different
algorithms have been used to study the GI50 activity
patterns.11,12 The COMPARE program6,11 developed by
K. D. Paull uses statistical correlation to find agents
with activity patterns across the 60 cell lines similar to
that of a “seed” compound. Back-propagation neural
networks,13 Kohonen self-organizing maps,14 principal
component regression,12,15 multidimensional scaling,12

hierarchical cluster analysis,12,16 and clustered image
maps (CIMs)11,16-19 have been used to predict mecha-
nism of drug action or to cluster compounds or cell lines
based on activity patterns. The CIM has proved a
particularly useful tool for visualization of patterns in
high-dimensional data sets such as these. This overall
“information-intensive” approach to molecular pharma-
cology has demonstrated that the patterns of GI50 values
are useful for identifying subgroups of compounds
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related to particular biological targets and for investi-
gating the mechanisms of action of screened compounds.

For this study, we identified 167 camptothecin ana-
logues among the compounds in the NCI Drug Informa-
tion System (DIS) database. There has been renewed
interest in this class of compounds for anticancer drug
development since the demonstration that camptothecin
acts by selectively inhibiting eukaryotic topoisomerase
I (top I) and since the identification of several clinically
active derivatives,20,21 including 9-amino CPT (NSC-
603071), topotecan (NSC-609699), and CPT-11 (NSC-
616348). Camptothecin analogues have been character-
ized by numerous research groups,22-28 notably by Wall
and Wani. These studies have provided the basis for our
present understanding of structure-activity relation-
ships among camptothecin analogues. Significant fac-
tors include the stereospecificity at the 20-position (20S
CPT being active, whereas 20R CPT is not), the activat-
ing effects of substituents at the 9- and 10- positions of
the A-ring, the inactivating effects of substituents at the
11- and 12- positions of the A-ring, substituent effects
at the 7-position of the B-ring, and the role of the E-ring
lactone in antitumor activity23,25 (see Figure 1A). De-
spite enormous efforts in this area, however, many
aspects of the cytotoxicity and antitumor activity of
camptothecins remain unclear. We recently proposed a
hypothetical computer model for the formation of a
ternary cleavable complex of top1, DNA, and campto-
thecin.29 Simultaneously, a complementary model based
on the crystallographic resolution of the top1-DNA
complex was reported.4 These studies provided a plau-
sible explanation for the observed stabilization of the
DNA-top1 cleavable complex by CPT and its deriva-
tives.

More generally, QSAR30,31 began with the pioneering
work of Hansch, who used multiple linear regression
(MLR) to build predictive models of the biological
activity of a series of compounds. However, MLR cannot

be used when there are more descriptors than com-
pounds (i.e., when the problem is overdetermined). More
recently, PLS (partial least-squares regression) has been
invoked to reduce the number of variables and optimize
them, for example, in comparative molecular field
analysis (COMFA).32 Here we have used an alternative
approach, genetic function approximation (GFA), de-
veloped by Rogers and Hopfinger,33,34 and compared its
results with those obtained by stepwise regression,
principal component regression (PCR), and PLS.

Method

The Data Set. We searched the NCI DIS database
of ∼460 000 compounds for CPT analogues and identi-
fied 167 that had been screened against the 60 cell lines.
For cluster analysis, we added a number of compounds
found previously to have top1 activity. Included were
four saintopin analogues and one nitidine analogue. Two
VP-16 analogues that are topoisomerase 2 (top2) inhibi-
tors were also included because we were interested in
the activity patterns of four so-called “bridge com-
pounds”, in which the 7-position of CPT was substituted
by VP-16. Activity data for these 174 compounds
included 4% missing values, each of which was replaced
by the mean value over all remaining cell lines for the
compound in question. These compounds are listed by
NSC number at http://discover.nci.nih.gov.

Fifty-eight of the 167 CPT analogues (see Figure 1A)
were selected for QSAR analysis on the basis of the clear
characterization of stereochemistry at the 20-position.
Since orientation at the 20-position is known to be
especially important, the compounds were removed if
their stereochemistry at the 20-position of CPT was not
specified or if they were submitted as racemic mixtures.
Several compounds, including 9-amino-20R-CPT (NSC
639173) and 12-nitro-17-hydroxy-camptothecin (NSC
684918) were excluded, because their activity was too

Figure 1. (A) The numbering system for the camptothecin core structure and examples of the training data set used for clustering
and QSAR analysis. (B) The structure of homocamptothecin (hCPT).
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weak to produce potency values above threshold in the
screening cell lines.

Structures for all camptothecin molecules were built
using the Cerius2 molecular modeling package (Molec-
ular Simulations, Inc., San Diego, CA).35 Each structure
was energy-minimized with a convergence criterion of
0.01 kcal/mol, using the universal force field developed
by Rappé and co-workers.36 Partial atomic charges were
computed by an equilibration approach.37 The MCSG
(maximum common subgroup) method in Cerius2 was
used to superimpose the molecules in the series.

Cluster Analysis. The patterns of activity across 60
cell lines were analyzed using the “hclust” (hierarchical
clustering) function implemented in the S-Plus statisti-
cal package (StatSci Division, MathSoft, Inc., Seattle,
WA).38 Compounds were clustered on the basis of their
patterns of GI50 values. For this study, we used the
“average linkage” clustering algorithm and distance
metric (1 - r), where r is the Pearson correlation
coefficient.

Genetic Function Approximation (GFA). The
genetic function approximation (GFA) method developed
by Rogers and Hopfinger33,34 was used to derive QSAR
models. This method combines Holland’s genetic algo-
rithm (GA)39 with Friedman’s multivariate adaptive
regression splines (MARS).40,41

In addition to linear and quadratic terms for each
descriptor variable, the MARS algorithm provides “trun-
cated power spline” terms for construction of regression
models. A spline term can be of the form 〈x - t〉 or
〈t - x〉, where x is the value of the original variable and
t is the “knot” of the spline. The spline term introduces
nonlinearity into the regression model. It can provide
high levels of accuracy, and MARS often competes well
with neural network approaches, given moderate num-
bers of descriptors. However, the algorithm becomes
computationally intensive with a large number of
descriptors, e.g. more than 20.

GFA uses a GA to search the MARS descriptor space
to evolve multiple models that best fit the training data.
Two advantages can be expected: (i) the GA searches
the MARS descriptor space efficiently, and (ii) it can find
models containing combinations of descriptors or fea-
tures that predict well as a group but poorly individu-
ally. The GFA procedure as used in this study was as
follows: (i) An initial population of 100 equations was
generated by a random choice of descriptors and basis
functions (linear, quadratic, or spline). For each spline
term, the initial knot was randomly initialized and later
optimized during GFA evolution. (ii) Pairs of “parent”
equations were chosen randomly from the set of 100,
and “crossover” operations were performed at randomly
chosen points within the equations to produce “progeny”
models that contained characteristics of both parents.
Because the crossover points in the two equations were
allowed to differ, progeny equations could have more
or fewer terms than the parents. (iii) The “goodness” of
each progeny model was assessed by a fitness function
using Friedman’s lack of fit (LOF) measure, which
assigns each equation of the population a score

where LSE is the least-squares error, c is the number
of basis functions in the model, d is a smoothing

parameter, p is the number of descriptors used in the
model, and m is the number of observations in the
training set. The LOF score resists overfitting by
penalizing for the addition of terms (i.e., descriptors and
basis functions). The smoothing parameter in the equa-
tion allows user control over the amount of penalty
imposed. In our calculations, the smoothing parameter
d was set to the default value of unity. (iv) If the new
equation’s fitness score (LOF) was among the top 100,
it was kept, and equation number 100 was dropped;
otherwise the progeny equation was discarded. Cross-
over steps ii-iv were repeated a preset number of times.
The process selects models with improved performance
by recombination of terms. The evolution from a popula-
tion of randomly constructed models can thus lead to
the discovery of highly predictive QSARs.

Results and Discussion

Camptothecin Antitumor Activity and Topo-
isomerase I Inhibition. The activity values from the
NCI drug discovery program were used in both cluster
analysis and QSAR studies. Activity is expressed as the
quantity -log(GI50), where GI50 is the 50% growth
inhibitory concentration compared with untreated con-
trols. For each compound, 60 activity values (one for
each cell line) constitute the activity pattern or “finger-
print”.

We have investigated the activity profiles of all 167
CPT analogues in the database. These include 20R CPT
derivatives, compounds with substituents on the A-ring
and B-ring, and some 14- and 17-substituted analogues.
In general, the activity for any single cell line is simply
an index of cytotoxicity or cytostasis. It reflects an in
vitro summation of effects that might arise from mul-
tiple mechanisms of action under cell culture conditions.
Interestingly, recent studies show that the activity
profiles of cell lines revealed the same trends as were
found in various structure-activity relationship studies
of top1.4,22,23,25,26,42-44 For example, (i) 20R CPT is
essentially inactive, whereas the 20S CPT is highly
active; (ii) 21-lactam S-camptothecin is inactive; (iii)
substitution at the 7-, 9-, or 10-position of most CPT
analogues enhances antitumor activity, and small sub-
stituents at position 11 are allowed, whereas addition
at position 12 is inactivating; (iv) activity is retained
when a methoxy group is added at position 10 or 11,
and addition of a methylenedioxy group to form a five-
membered ring across positions 10 and 11 (10,11-MDO
CPT) enhances potency; however the simultaneous
addition of methoxy groups to positions 10 and 11
(10,11-DMO CPT) is inactivating.

Cluster Analysis. Our previous studies11-19,45 have
demonstrated coherent mapping between chemical struc-
ture and in vitro cell screen activity patterns. Here, we
also find that the in vitro cell screen activity patterns
reflect the biological behavior of tested compounds. Four
saintopin analogues, two etoposide analogues, and one
nitidine analogue were included in the data set. Two of
the saintopins (UCE6 and UCE1022) have been shown
in biochemical assays to be top1 agents; the other two
saintopins show both top1 and top2 inhibition. The
nitidine analogue has been reported to be a top1 agent,24

LOF ) LSE/ {1 -(c + dp)/m}2
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and the two etoposide analogues are top2 agents.46 We
wished to test whether cluster analysis of the in vitro
cell screen activity patterns could distinguish these
compounds from one another on the basis of mechanism
of action. The cluster tree (distance metric, 1 - r;
clustering method, average linkage) for a total of 174
compounds is shown in Figure 2.

In general, we found that compounds similar in
chemistry and presumed mechanism of action tended
to group together. The camptothecin analogues clus-
tered side by side in the cluster tree, as shown in Figure
2. However, compounds 1 and 2 in the tree were very
different from the rest of the CPT analogues in terms
of their activity patterns. These two compounds, 12-
nitro-17-hydroxy-CPT (1) and 9-amino-20R-CPT (2),
were essentially inactive in the screen; only one or
two of the 60 cell lines were sensitive enough for 50%
growth inhibition at the highest concentration tested
(hiconc ) 10-4 mol/L). In other words, there was not
enough information encoded in the patterns to charac-
terize the biological behavior of these two compounds.
We treated them as outliers in the QSAR analysis that
will be discussed later. With the exclusion of compounds
1 and 2, as well as 3 and 4 (etoposide analogues), the
average Pearson correlation coefficient (r) for all pair-
wise relationships between activity patterns for the rest
of the CPT data set was 0.703 (SD ) 0.181). This
observation indicates the unique pattern of antitumor
activity for CPT analogues and perhaps reflects the
current view that CPTs act by a single and specific
primary mechanism, top1 inhibition.

There were two major branches in the cluster tree
shown in Figure 2: 1-167 and 168-174. The first
group consisted almost entirely of CPTs. A group of very
potent CPTs (34-52) and a set of saintopin derivatives
(16-18, 20) were among the large group. The activity
patterns of the four saintopin derivatives were similar
to those of the CPTs. It was known on the basis of
previous biochemical assay data that UCE6 (17) and
UCE1022 (18) are top1 agents; the other two saintopins
have been found to have both top 1 and top 2 activities.46

In the four “bridge compounds” (NSC 683555-
683558), the 7-position of CPT was substituted by
etoposide. These compounds (76-79), which formed one
small subgroup within the middle branch of the cluster
tree, showed activity patterns quite similar to that of
topotecan (NSC 609699, 61) (r > 0.82) but very different
from those of the etoposide derivatives (3 and 4). It is
possible that the “bridge compounds” were hydrolyzed
under cell culture conditions and that the top1 activity
dominated because the potency of CPT on a molecular
basis is greater than that of etoposidesor that the top1
dominated without hydrolysis. Another possible expla-
nation is that the etoposide moiety was released in an
inactive form. The small subgroup (168-174) consisted
entirely of relatively inactive 5-substituted CPTs. In
summary, the cluster analysis demonstrated, even at a
“micro” level, that the activity patterns can encode
incisive information about the selective cytotoxicity of
compounds and their mechanisms of action.

Biochemical assays of top1 inhibition have shown
inactivation of CPT when the 20-OH is substituted with
OCOCH2NH3

+,17 but most such compounds in our data

set were highly potent in the cell screen. This apparent
discrepancy suggests that these compounds are con-
verted to the normal CPT analogues by the hydrolytic
reaction shown in Figure 3A. Therefore, we will refer
to these CPTs hence forth as prodrugs. Most of the
prodrugs in the data set have a 20-OH substituted by
OCOCH2R. CPT-11 is also a prodrug by virtue of
substitution at the 10-position (See Figure 3B).47,48 The
activity patterns of these prodrugs appeared similar to
those of the corresponding normal CPTs, suggesting
that they can be converted efficiently under tissue
culture condition.

QSAR Model for CPT Analogues. In this study, we
used the genetic function approximation (GFA) method
to construct QSAR models based on 58 CPT analogues
(see Figure 1A). The compound selection criteria were
described in the Methods section. The mean activity
value across 60 cancer cell lines was taken as the
dependent variable to be predicted. For each calculation,
we did 100 000 crossover steps, after which LOF scores
for the 100 final models remained almost unchanged,
indicating convergence of the calculation. Both random-
ization tests and full cross-validation procedures showed
the QSAR model to be predictive. Homocamptothecin,
a novel CPT analogue that differs from CPT by the
presence of an additional methylene group in the E-ring
(see Figure 1B), was predicted to be among the more
active compounds by our GFA models. The QSAR
results can be summarized as follows.

(1) Significance of Molecular Descriptors. The
Cerius2 QSAR+ module provides more than 160 de-
scriptors divided into seven categories: conformational,
electronic, receptor, quantum mechanical, shape, spa-
tial, thermodynamic, information, and topological. Among
these, 49 molecular descriptors constitute a “default”
set. Using this default set, we did not obtain any good
QSAR models. The average cross-validated (CV) r2 was
only 0.344 (see Table 1). Therefore, the descriptor set
was extended to 132 descriptors, including (i) all ap-
plicable 2D and 3D descriptors in the Cerius2 QSAR+
package, (ii) 24 partial atomic charges on CPT core
atoms, and (iii) four “pharmacophoric” distances (the
interatomic distances between significant functional
atoms present in molecules of the data set). With these
additions, the models were greatly improved. The
results are shown in Table 1.

To investigate how well GFA performed, we also
evaluated descriptors in the extended descriptor set by
examining how they correlated with the mean activity
values. Descriptors that did not correlate with mean
activity values were excluded from the set. We then used

Table 1. The Choice of Molecular Descriptors

model
no. of

descriptors LOF r2 CV r2 descriptiona

1 49 1.057 0.415 0.344 default
2 73 0.632 0.738 0.642 default + Q
3 77 0.496 0.795 0.706 default + Q + D
4 132 0.451 0.800 0.702 all descriptors
5 43 0.406b 0.812b 0.735b descriptor subset
a “Default” refers to the 49-default descriptor database sug-

gested by the Cerius2 program. “Q” refers to 24 atomic charges
generated for core atoms of CPT. “D” refers to four interatomic
distances between atoms of the particular functional groups of
CPT. b There is no direct comparison between these numbers and
the numbers in other tables.
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Figure 2. Hierarchical cluster analysis of 167 camptothecin analogues and seven related compounds based on their activity patterns across 60 human cancer cell lines. The compounds
are numbered in cluster order, and the NSC numbers are shown at the bottom. The average linkage algorithm with correlation metric was used.
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the remaining 43 descriptors. The value of CV r2 for the
best QSAR model generated using the set of 43 was
0.735, slightly better than that 0.702 obtained using 132
descriptors. Overall, the QSAR model based on the 132-
descriptor set and the one based on the 43-descriptor
set had similar qualities. As long as the six or seven
descriptors that showed up in the final model were
included in the descriptor set, it made little difference
what other descriptors were also included. GFA ef-
ficiently optimized the model and gave reasonably good
values of CV r2 with low LOF. The 43-descriptor set was
used in all further GFA calculations.

(2) Performance of GFA Models. The GFA algo-
rithm offers a new nonlinear approach to the construc-
tion of QSAR models. For comparison, stepwise regres-
sion, principal component regression (PCR), and PLS
were also performed on the same data and the same
43-descriptor set. The results are compiled in Table 2,
along with the results obtained by GFA. Reasonable
performance was obtained by a cross-validated forward
stepwise regression procedure (with F ) 4.0 as the
threshold value for adding variables). The r2 and CV r2

were 0.695 and 0.609, respectively, as compared with
0.805 and 0.783 for the GFA method. The r2 was 0.865
for backward stepwise regression analysis with F ) 4.0.
However, the CV r2 was only 0.635. Only four variables
were used in the model generated by forward stepwise
regression, whereas 16 variables were used in that
generated by backward stepwise regression with F )
4.0. For backward stepwise regression with F ) 6.0, r2

and CV r2 were 0.783 and 0.671, respectively, but nine
variables still remained in the QSAR model. There
might be an overfitting problem for the backward
stepwise regression analysis performed here.

The QSAR models from forward and backward step-
wise regression are shown in Table 4. The molecular
descriptors included in the equation by forward stepwise
regression were also ones frequently obtained by GFA.
PLS yielded an r2 of 0.621, comparable with that of
stepwise regression. However, CV r2 was only 0.486 with
two components used; hence, the PLS model was not
very predictive. As to the PCR analysis with six com-
ponents, both r2 (0.597) and CV r2 (0.489) were poor.
We believe that the superior performance of GFA was
due largely to the inclusion of spline terms in building
QSAR models, because the spline terms permit model-
ing of nonlinearities.33,34,40,41

The top eight models for prediction of mean activities
generated using GFA are listed in Table 3. The most
frequently used descriptors in the population of 100 best
QSAR models were partial atomic charges at the 11-
and 12-positions of the A-ring and three interatomic
distances that reflect pharmacophoric patterns involving
the D- and E-rings (see Figure 4). These results are
consistent with those of our earlier molecular modeling
studies,29 indicating that three functional groups (oxy-
gen of 20-OH, oxygen of 21-CdO in the E-ring, and 18-O
in the D-ring) are important for inhibitory activity. The

Figure 3. (A) Conversion of 20-ester prodrugs to campto-
thecin. (B) Conversion of CPT-11 to SN-38.

Table 2. Performance of GFA Models and the Models
Generated by Other Statistical Methods

method r2 CV r2 description

GFA 0.805 0.783
forward stepwise regression 0.695 0.609 F ) 4.0a

backward stepwise regression 0.865 0.635 F ) 4.0a

backward stepwise regression 0.783 0.671 F ) 6.0a

PLS 0.622 0.486 no. of components 2
PCR 0.597 0.489 no. of components 6

a The number of variables in the QSAR equation from forward
stepwise regression analysis was 4, whereas the numbers of
variables maintained in backward stepwise regression with F )
4.0 and F ) 6.0 were 16 and 9, respectively.

Table 3. Summary of the Eight Best GFA Models for the Optimized 43-Descriptor Set

model no. QSAR equationa

1 Y ) 4.49 + 3.45Q11 - 25.85〈D18-22 - 6.11〉 - 4.95Q12 - 17.66〈5.86 - D18-23〉 - 23.15Q5 + 226.68〈0.20 - Q20〉
r2 ) 0.805, CV r2 ) 0.783, LOF ) 0.461

2 Y ) 3.55 + 2.90D22-23 + 3.33Q11 - 4.96Q12 - 21.26Q5 - 27.08〈D18-22 - 6.11〉 - 17.57〈5.86 - D18-23〉
r2 ) 0.790, LOF ) 0.474

3 Y ) 3.48 + 2.89D22-23 + 3.32Q11 - 4.96Q12 - 17.65〈5.86 - D18-23〉 - 21.07Q5 - 27.02〈D18-22 - 6.11〉
r2 ) 0.790, LOF ) 0.474

4 Y ) 0.94 + 0.46D22-23
2 + 3.34Q11 - 4.96Q12 - 21.39Q5 - 27.00〈D18-22 - 6.11〉 - 17.56〈5.86 - D18-23〉

r2 ) 0.790, LOF ) 0.474
5 Y ) -3.47 + 3.32Q11 - 4.95Q12 - 20.99Q5 + 2.88D22-23 - 27.14〈D18-22 - 6.11〉 - 17.65〈5.86 - D18-23〉

r2 ) 0.790, LOF ) 0.474
6 Y ) 0.98 + 0.46D22-23

2 + 3.33Q11 - 4.95Q12 - 17.64〈5.86 - D18-23〉 - 21.20Q5 - 26.94〈D18-22 - 6.11〉
r2 ) 0.790, LOF ) 0.475

7 Y ) 0.99 - 21.12Q5 + 0.46D22-23
2 + 3.33Q11 - 27.06〈D18-22 - 6.11〉 - 4.95Q12 - 17.64〈5.86 - D18-23〉

r2 ) 0.790, LOF ) 0.475
8 Y ) -3.37 + 2.86D22-23 + 3.30Q11 - 4.96Q12 - 26.93〈D18-22 - 6.11〉 - 20.75Q5 - 17.78〈5.86 - D18-23〉

r2 ) 0.790, LOF ) 0.475
a Q refers to atomic charge and D refers to the interatomic distance between two atoms.
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electrostatic interaction of the A-ring with the binding
site could also be important.

(3) Randomization Tests and Full Cross-Valida-
tion Test. To be useful, a QSAR model must be
predictive so that it can provide estimates of the activity
of untested compounds similar to those in the data set
used to construct the model. To determine the model’s
reliability and significance, both randomization and full
cross-validation procedures were performed.

The randomization was done by repeatedly permuting
the dependent variable set (i.e., the mean activity data).
If the score of the original QSAR model proved better
than those from the permuted data sets, the model
would be considered statistically significant. The results
of 49 randomization tests are presented in Figure 5. The
correlation coefficient, r2, for the nonrandom QSAR
model was 0.805, significantly better than those ob-
tained from randomized data (mean r2 ) 0.266, SD )
0.128). None of the 49 permuted sets produced an r2

comparable with 0.805; hence, the value obtained for

the original GFA model for the 58 compounds could be
considered significantly different from zero with p <
0.05.

A full cross-validation has also been done for one of
the best GFA models. Standard cross-validation in GFA
encompasses only the optimization of regression coef-
ficients; it does not encompass optimization of the choice
of descriptors. That is, the regression model is validated
only for the specific subset of descriptors obtained from
GFA. In contrast, full cross-validation encompasses the
entire algorithm, including both the choice of descriptors
and the optimization of regression coefficients. For the
jackknife “leave-1-out” rule, each full cross-validation
step finds the best subset of descriptors for a training
set of N - 1 compounds. Here, the full CV r2 was
computed using the predicted values of the missing
molecules. The results based on the rules of “leave-1-

Figure 4. Frequency of descriptor use for the GFA model. The six descriptors used in the best model shown in Table 3. These
descriptors are highly represented in the final 100 models, whereas other descriptors are rarely used. These observations indicate
convergence of the GFA process.

Table 4. Summary of QSAR Models Generated by Forward
and Backward Stepwise Regression

method QSAR equationa

forward
stepwise

Y ) 58.07 - 0.86“RadOfGyration” + 3.55Q11 -
5.91Q12 - 11.61D18-19

F ) 4.0 r2 ) 0.695, CV r2 ) 0.635, no. of variables ) 4

backward
stepwise
F ) 4.0

Y ) 17.39 + 8.41“IAC-Mean” + 4.01“Kappa-3” -
4.04“Kappa-3-AM” - 12.12“Density” +
36.86“Jurs-RASA” - 0.07“Jurs-TASA” +
7.53Q11 - 5.17Q12 - 13.97Q4 - 65.45Q17 +
22.69Q8 + 18.60Q24 + 25.95D22-23 -
28.28D18-22 - 6.24D23-24 + 28.16D25-23

r2 ) 0.865, CV r2 ) 0.635, no. of variables ) 16

backward
stepwise
F ) 6.0

Y ) 15.14 + 8.41“Jurs-RASA” - 0.02“Jurs-TASA” +
4.98Q11 - 16.62Q4 + 15.08Q8 - 15.87D18-19 +
16.05D22-23 - 8.45D24-22 + 16.31D25-23

r2 ) 0.783, CV r2 ) 0.671, no. of variables ) 9
a Q refers to atomic charge and D refers to the interatomic

distance between two atoms in the QSAR equation.
Figure 5. GFA Randomization test. The first bar (solid) shows
the r2 value for the model based on the actual dataset; the
other 48 bars (open) show r2 for 48 models based on permuted
data.
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out”, “leave-2-out”, “leave-5-out”, “leave-7-out”, and
“leave-10-out” are shown in Table 5. In other words, at
each step one, two, five, seven, or 10 of the 58 com-
pounds were left out in the GFA training process. The
process was repeated until every compound had been
left out and predicted once. CV r2 was then calculated
on the basis of predictions by the models obtained from
the remaining compounds in the data set. The GFA
models proved to be very predictive, with good full CV
r2 values obtained when up to seven molecules were left
out at a time (i.e., p , 0.01 with respect to the null
hypothesis that r2 ) 0). The observed mean activity
values and those predicted by full cross-validation based
on the “leave-1-out” rule are shown in Figure 6.

Conclusion

The patterns of GI50 values across 60 cancer cell lines
can provide rich information on chemical structure
classification and mechanism of action, even within
quite homogeneous data sets such as those for the CPTs.
In the present study, we find that the activity profiles
of CPTs for the 60 cell lines reflect those found in
various structure-activity relationship studies of top1
at the biochemical level. The only apparent discrepancy
observed is for compounds with the 20-OCOCH2R sub-
stituents (instead of 20-OH), which are much more
active in the NCI cell screen than in biochemical assays.
This finding can, however, be explained by a hydrolytic
reaction mechanism that probably converts these “pro-
drugs” to their normal CPT analogues.

GFA has several possible advantages over traditional
statistical methods of multivariate analysis. Unlike
traditional multiple regression methods, it offers a

nonlinear approach to the construction of QSAR models,
using a variety of basis functions including spline terms.
Spline terms make the models relatively unstable, but
that problem can be ameliorated by reducing the size
of the descriptor set and increasing the number of
crossover operations. Like PLS, GFA is able to produce
robust equations when the number of independent
variables vastly exceeds the number of observations.
However, PLS reduces the dimensionality of the inde-
pendent variable set by extracting correlated compo-
nents using PCA, whereas GFA efficiently selects
correlated independent variables using GA. The algo-
rithm tests full-size models rather than incrementally
building them as most other techniques do. It is better
at discovering combinations of correlated variables,
although there remains uncertainty as to how many
degrees of freedom should be considered lost per spline
term. Finally, one of the important differences between
GFA and other method is the construction and use of
multiple models. All models in the finally selected
population have roughly the same high productivity, but
each model may provide different insights into the
problem. The utility of the modeling process can some-
times be increased by averaging the results of multiple
models with the aid of scientific intuition, rather than
relying on an individual model.

The QSAR model relates molecular descriptors to
mean activity values. The frequently used descriptors
in the best QSAR models were partial atomic charges
at the 11- and 12-positions of the A-ring. The three
pharmacophoric distance descriptors (the interatomic
distances between significant functional atoms of O18,
O19, O22, and O23) also appeared in the QSAR models.
These functional groups have been found in our previous
modeling studies to be important.29 On the basis of the
current QSAR results and earlier molecular modeling
studies, a four-center pharmacophore model has been
constructed for use in searching the NCI Drug Informa-
tion System Database (Fan et al., unpublished studies).
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